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Abstract

This paper presenls an overview of the methods
used with an ezperimental prototype of an autonomous
powered wheelchair. The paper focuses on the impor-
tance of describing reference paths as continuous (or
piecewise-continuous) geomelric entities, rather than
as a function of time or a series of discrele points.
Furthermore, the importance of using the current es-
timated position and orientation of the wheelchair in
order to select the reference point on the path ts ezam-
ined.

1 INTRODUCTION

The rehabilitation field is one in which there ex-
ists significant opportunity for robotics to serve hu-
mankind. For instance, due to certain combinations of
disabilities, some individuals find it difficult, tedious,
or impossible to use a joystick (or other standard user-
input device) to guide a powered wheelchair through
the precise trajectories which are typically required
for navigation within a home or office environment.
These same individuals may, however, have the abil-
ity to complete the less stringent task of selecting a
desired destination from a menu. If an automatically-
guided vehicle (AGV), specifically a wheelchair, were
able to track a path to that desired destination, the
individual would clearly be given an increased degree
of independence.

A prototype of such a system has been developed
at the University of Notre Dame [1}[2]. The system
employs an extended Kalman filter to produce ongo-
ing estimates of the vehicle’s pose (its position (X,Y)
and orientation (@), also referred to as posture). The
system then uses these estimates along with a sim-
ple model of the powered wheelchair’s controller to
accurately follow a trajectory. Although this paper
presents an overview of the system, it will concentrate
on the method used to describe and track paths. This
system’s success depends on the fact that it repre-
sents the wheelchair’s nominal (or reference) path as
a piecewise-continuous geometric entity, rather than
as a function of time or a series of poses. This rep-
resentation allows the system to select the current
reference point (the reference point is the point on
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the reference path which represents the desired posi-
tion and heading of the vehicle) based on estimates of
the wheelchair’s pose, and allows the velocity of the
wheelchair to be adjusted without affecting the sys-
tem’s ability to track a path.

2 BACKGROUND

The general navigation problem can be summarized
by three questions: 1) Where am 17, 2) Where am I
going?, and 3) How should I get there? [3]. Many
navigation methods have been developed in the gen-
eral research area of mobile robotics. Most AGVs cur-
rently in use in industry[4], as well as a wheelchair
system[5], solve the navigation problem by following
guide tracks painted on or embedded within the floor
of the robot’s environment. Due to their inflexibility
to changes in the environment, the limited variety and
complexity paths which they can follow, and their in-
ability to account for tracking errors, these systems are
impractical for a home or office environment. Other
mobile robots have been developed for use in an un-
structured environment using proximity-type sensors
such as sonar or infrared sensors and/or vision. These
systems are typically developed for either outdoor use
(road following) [6] or indoor use [3](7][8]. The mobile
robots developed for use within indoor environments
typically suffer due to the need to build up accurate
maps of the environment. Any inaccuracy or imper-
fection in these maps will degrade the performance of
the mobile robot.

Another group of research tries to answer the ques-
tion “Where am I 7” by employing a set of “bea-
cons” at known locations within the environment.
These systems typically use infrared emitters [9] or
laser scanners to read bar codes around the environ-
ment[10]. These two systems use a triangulation of the
measurements to provide pose estimates, which makes
these systems very sensitive to measurement errors.
Another system, which uses geometric landmarks as
beacons, attempts to solve this problem through the
use of an extended Kalman filter to combine knowl-
edge from the beacons with odometry information [3].
However, sonar is used as the primary sensor in this
system. To provide accurate estimates, great care



must be taken not to misidentify a beacon, and most of
the sonar readings must be discarded. Furthermore,
sonar sensors have been found to produce spurious
distance measurements, especially in cluttered envi-
ronments, due to a phenomenon known as specular
reflections [11].

3 APPROACH

A method of addressing the navigation problem has
been developed for an autonomous wheelchair system
(1]{2]. In addition to the difficulties present in the gen-
eral navigation problem, an autonomous wheelchair
has special requirements. For example, the system
cannot simply avoid all objects in the environment
and try to follow a clear path, since the system must
be able to approach certain objects, such as a desk,
table, or refrigerator. This application also requires
that the system be highly accurate and repeatable.
For example, being a few inches off of the reference
path in a factory corridor may be acceptable for many
AGYVs, but straying a few inches as a wheelchair passes
through a doorway could be damaging or disastrous.
Furthermore, the system must provide a smooth ride,
with small accelerations, since it carries a human pas-
senger.

The accuracy required for the wheelchair applica-
tion demands very precise estimates of pose (ie., a
very good answer to the question “Where am 17”).
The experimental wheelchair system is pictured in
Figure 1. This wheelchair is driven by two rear wheels
which are actuated independently for steering con-
trol. For this drive configuration, shown schematically
in Figure 2, a set of differential equations which re-
late the differential wheel movement of the two drive
wheels to the differential position and orientation of
the wheelchair have been derived [1][2]. These dif-
ferential equations can be integrated numerically by
measuring the wheel motion of the two drive wheels
using optical shaft encoders. In Figure 2, the posi-
tion of a point on the wheelchair is denoted by X
and Y, while the orientation of the wheelchair is de-
noted by ¢. Estimates of the wheelchair’s pose pro-
duced by this numerical integration have been referred
to in the literature as “dead-reckoning.” However, if
there are any initial estimation errors, modelling er-
rors, or disturbances (such as wheel slippage), then
errors in the wheelchair’s pose estimates produced
by dead-reckoning will grow as the wheelchair trav-
els throughout its environment. Therefore, some type
of observation or measurement of the surrounding en-
vironment must be made to correct any errors in the
dead-reckoned estimates of the wheelchair.

Two video cameras are placed below the seat of the
wheelchair to observe visual cues which are located
at discrete positions within the environment. Using
a pin-hole camera model, the horizontal position of a
cue in the image plane of each camera is related alge-
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braically to the pose of the wheelchair within its en-
vironment. Small ring-shaped, elliptical patterns are
used as the visual cues (passive “beacons”) for the
wheelchair system. These cues are typically affixed to
walls, approximately one foot above the ground. The
locations of these cues are the only a priori informa-
tion about the environment that the system requires
in order to obtain accurate pose estimates. These pat-
terns are chosen because they are rapidly and robustly
detectable from a digitized image. Through an algo-
rithm known as the extended Kalman filter [12], the
observations of the visual cues are used to update and
correct the estimates of the wheelchair’s pose based on
dead-reckoning alone. For the wheelchair system, the
extended Kalman filter typically produces position es-
timates which are accurate to within an inch and ori-
entation estimates which are accurate to within one
degree [1][2]).

Based on the accurate pose estimates produced by
the extended Kalman filter, desired reference paths
are “taught” to the vehicle. The wheelchair system
is taught by manually guiding the wheelchair through
the desired path. During the teaching procedure, es-
timates of the wheelchair’s pose are generated. The
taught path is then saved in a manner which is com-
patible with a tracking procedure which in turn is used
to repeat the taught path. Many paths which would
take the user from one station to another in the home
or office would be taught and recorded during a one-
time teaching session. The use of a teacher by the
wheelchair system allows the judgement of the teacher
to be invoked. Humans are very adept at controlling
nonholonomic or mobile systems, especially for tight-
tolerance maneuvers (e.g., maneuvering to approach a
desk or pass through a door). Therefore, the use of a
human to teach paths which take the wheelchair from
station to station provides a high level of path plan-
ning capability which is otherwise difficult to achieve.
The system has been successfully taught complex ma-
neuvers in a tight office setting and, using the path



Figure 2: Wheelchair schematic.

tracking algorithm described below, the system has
successfully followed taught paths in a precise and re-
liable manner. Another strength of this method of
defining paths is that the same estimation algorithm
is used both to generate a description of a path, and
then to track the same path. This decreases the ef-
fects of any error in the measurement of the absolute
position of the visual cues.

The wheelchair system described' above has been
successfully developed and tested both in a labora-
tory and an office setting. Video documentation of
the wheelchair system while navigating throughout

an office setting is available from the authors. Ever-

est & Jenning’s Tempest model powered wheelchair
is used as the experimental wheelchair platform. An
80386-based personal computer placed on-board the
wheelchair carries out the image processing, wheel-
rotation sensing, pose estimation, teaching of refer-
ence paths, and tracking of taught reference paths,
all in real-time. Two CCD video cameras placed be-
low the seat of the wheelchair view the ring-shaped
cues which are placed at discrete locations within the
wheelchair’s environment. Also, optical shaft encoders
roll on the two drive wheels to measure the drive wheel
rotations. Control of the drive wheel motors is accom-
plished by interfacing the personal computer directly
with the wheelchair’s joystick control box.

4 PATH DESCRIPTION

Once accurate estimates of vehicle pose become
available, the questions of “Where am I going?” and
“How do I get there?” must still be addressed. Typ-
ically this is accomplished by specifying a path for
the vehicle to follow. The way in which this path is
described is critical to the success of the system. It
should be noted that the path description involves the
representation of the path itself as well as the method
used for selecting a reference point on that path.

4.1 TIME-BASED DESCRIPTION

Many systems choose to describe the reference path
as a function of time [13]. At a given time, then,
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the vehicle compares its current pose (X(t),Y(t),and
(1)) to the desired pose (X,cs(t),Yres(t),and 4re;(t))
and attempts, through a control algorithm, to elimi-
nate the difference. Although this method may work
well when only small disturbances are present, it seems
to suffer from several problems as tracking errors be-
come large. The first, and likely most serious, flaw of
this method is that there may develop a lag (or lead)
between the reference point on the path and the ac-
tual location of the vehicle. On a straight path, this
would not be a.problem. However, on a path with
significant curvature, this would result in the vehicle
“cutting corners” of the path. Clearly, for tight tol-
erance paths, this behavior would be unacceptable.
Another, similar, problem can be seen in that, gen-
erally, when a path is planned, inertial considerations
and the comfort of the user dictate that the reference
velocity be reduced for sections of the path with high
curvature. If this reference velocity is also a function
of time (v,.s(t)), then a lag (or lead) of the vehicle
compared to the reference could lead to high veloc-
ities in areas of high curvature and low velocities in
areas of low curvature, precisely the opposite of what
is desired.

One possible response to these problems would be
to suggest that by servoing the velocity of the system,
any lag (or lead) could be avoided. However, this ap-
proach also encounters several problems. First, since
infinite accelerations are not possible, there clearly will
be some response time during which a lag (or lead)
will persist. Second, the frequent acceleration and de-
celeration required by this approach would result in
a very jerky, uncomfortable ride. Comfort could be
improved by setting an upper bound on the system’s
accelerations, but this would again require that a con-
siderable lag (or lead) be allowed. It is also worth
noting that the Kalman filter instantaneously changes
the estimates of the pose when a new observation is
made. If a time-based path description is used, this
change could “create” a lag (or lead) even if none were
present due to tracking errors alone.

The last problem raised by specifying the refer-
ence path as a function of time is that this precludes
the possibility of changing the velocity during path-
tracking for other reasons. Doing so would clearly gen-
erate the type of lag (or lead) described above. Yet the
ability to change velocity is very important in order
to maintain accurate estimates. As the vehicle pro-
gresses, its ability to maintain accurate estimates de-
pends in part on the number of observations which can
be made. If the covariance matrix (and hence the un-
certainty of the estimates) becomes exceedingly large,
the system should try to improve its estimates without
travelling an excessive distance. For a given measure-
ment system, the number of observations which can be
made per unit time is fixed. Therefore, the only way
to acquire more observations while travelling a given



distance is to slow down. This will allow denser obser-
vations to be made, improving estimate accuracy, and
eventually allowing the system to return to full speed
[14]).

4.2 POINT-BASED DESCRIPTION

Another possible method of describing the reference
path would be to simply describe the path as a series
of discrete poses [15]. This method is similar to the
one most often employed by holonomic robots to fol-
low a trajectory. The method waits for the vehicle to
get sufficiently close to a point (say, to within ¢), and
then commands the vehicle to move toward the next
point of the reference path. This method would not
suffer from the possibility of the vehicle lagging (or
leading) the reference point, since the reference point
would only advance once the vehicle was sufficiently
close to the current reference point. Furthermore, this
method would allow for independent specification of
the nominal velocity, allowing the vehicle to slow down
in order to improve the accuracy of its estimates.

This method does suffer from several other short-
comings, however. Unlike holonomic robots, inverse
kinematics are not available to uniquely determine the
drive wheel rotations required to move from the cur-
rent estimated position to the next reference point. A
planning routine would have to be incorporated to se-
lect a possible path for the vehicle to travel in order
to get to the next reference point. Note that to en-
sure continuity when the next point would be reached,
such a path-planning algorithm would also need to
consider the next reference point. This planned path
would somehow have to be represented, possibly by
a time-based description, in which case nothing has
been gained by using a point-based description. Alter-
natively, the vehicle could pivot at the current point
until its heading is toward the next point, and then
proceed towards that point. Due to tracking errors,
a series of pivots and moves would most likely be re-
quired. Clearly, this sort of path-tracking would not
yield a smooth or enjoyable ride. A third possibility
would be to select a desired heading (¢r.s) toward
which the vehicle would steer while maintaining some
forward velocity. This would allow for a somewhat
smoother ride, but would lead to jerks in the ride
at each reference point when (¢,.;) changes instan-
taneously. If this change were large enough, it could
also lead to large tracking errors.

Another problem encountered by any method
which uses a series of points to represent the path is
due to the previously described problem of instanta-
neous changes in the estimates. Such a change could
produce the situation in which the vehicle estimates
its position as being beyond the point toward which it
was moving (the estimated position “jumped” forward
along the path). Clearly, the vehicle should not back
up, but the criterion that it be within ¢ of a reference
point to move on has not been satisfied. Some means
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Figure 3: Reference path description.

of picking which reference point to use would have to
be implemented. At the other extreme (%jumping”
backward), the change in the estimates could result
in moving towards a point which is not the nearest
point to the estimated pose of the vehicle. This would
clearly lead to “cutting corners” as described above.
4.3 GEOMETRY-BASED
DESCRIPTION

The autonomous wheelchair system uses a different
way of representing the reference path which addresses
the above problems. Linear functions of the arc length
of the path are used to represent segments of the de-
sired reference path as shown in Figure 3. Thus, for
the j*» path segment,

Xres(s)) = ag+af;s, ()
Yees(s5) = bo+biss 2
bres(s)) = cp+cis; ®)

where 0 < s; <1 for j=1,..,J, where J repre-
sents the number of segments in the reference path
and the parameters ao, 81, bo, b1, co, 1 are pro-
duced during the teaching procedure. Thus, the en-
tire sequence of pose estimates which are generated
during the teaching of the desired reference paths is
compressed into J first-order (i.e. straight-line) seg-
ments (Note that because position and orientation are
not independent over the course of any given segment,
small incompatibilities may be present). Having rep-
resented the path in this way, a reference point on
the path must be selected, and a way of steering to-
wards it must be provided. For this system, the above



task is accomplished purely geometrically, based on

the estimated pose of the wheelchair and the stored

representation of the reference path.

As shown in Figure 3, navigation of the vehicle can
be based upon tangential, normal, and angular errors
between the vehicle and the desired reference path.
For a given path segment, the tangential, normal, and
angular errors between an arbitrary point, P, on the
vehicle and a point on the reference path are given by

et = (Xres(s) — X) cosé + (Yres(s) - Y) sing (4)
en = (Xrey(s) — X) sing - (Yees(s) = Y) cosd (5)

s = bres(s) — ¢ (6)

where X, ¥, and ¢ represent estimates of the posi-
tion of a point P on the vehicle and orientation of the
vehicle as determined by the extended Kalman filter.
For some time-based controllers, the tangential error
is used to control the speed that the vehicle travels
along the reference path. For this algorithm, however,
e is specified in order to determine the reference point
on the path. At any instant, the estimates of position
and orientation are known. Therefore, the only un-
knowns in equation (4) are e; and s. For example,
choosing e; = 0 in equation (4) and using equations
(1) and (2), equation (4) yields

ec = 0= (ao+ays—X) cos g+(bo+b1s—~¥) siné (7)

where ay, a;, bg, and b; are known from the reference
path teaching procedure. Expressing (7) in terms of s
yields

5= —l(ao = X) cosg+ (b — ¥) sing]
[61 cosd+b; sing)

®

where 5 is the value of the arc length along the refer-
ence path of the point to be used as the current refer-
ence. Once the value of s is known, the normal error,
en, and the orientation error, ey, can be determined
via equations (5) and (6), respectively. By choosing
et = 0, the value of s given by equation (8) yields
the position along the path which is intersected by a
line normal to the vehicle passing through point P. If
e¢ > 0, then the vehicle, in a sense, looks ahead along
the path to determine which position on the path to
control towards. The commanded control variable, u,
is then determined by passing the normal and angular
errors through a standard PID controller. The de-
sired drive wheel velocities, bnom, and Gnom,, to be
commanded to the motor controller are then found by
the following relationships:

@Brom,,
=

VYnom

R

(1+u) )

onown,J =
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where vy, ,m represents the separately-determined com-
manded speed of the midpoint (along the axle) of the
two drive wheels, and R is the drive wheel radius (as-
suming identical wheels). The nominal drive wheel ve-
locities, Onom, and Opom,, are then fed to the vehicle’s
motor controller. Here it is clear that the nominal
velocity can be adjusted without affecting the path-
tracking ability of the system. While the path is be-
ing tracked, this velocity can be adjusted based on the
curvature of the path,the current confidence in the es-
timates (as determined by the covariance matrix), or
other considerations.

The above formulation assumes the system has a
method of determining which path segment to use in
order to find the reference point. The simplest way
to do this would be to start at the first path segment,
and increment the reference path segment each time
8 > 1. In practice, two problem arise when using this
algorithm. First, when e,, (normal error) becomes suf-
ficiently large, s would decrease as the vehicle turns
to return to the path. In practice and in simulations,
it was found that such behavior could lead to instabil-
ity. The simple restriction that s can never decrease
was added to the algorithm to preclude this possibil-
ity. Secondly, incrementing the path segment when-
ever 8§ > 1 allows the vehicle to skip portions of the
path in sections of high reference path curvature. In
order to avoid this, the vehicle estimates its distance
from the line which is perpendicular to the current
segment and which crosses through the end of the seg-
ment. When this distance is less than or equal to 0, the
next reference segment is used. This strategy ensures
that each segment will be tracked until the vehicle is,
in some sense, at the end of that segment. The rou-
tine is used recursively to ensure success even if the
estimates change suddenly.

The above geometric method of describing and
tracking the path has allowed the system to accurately
track a variety of tight-tolerance paths in a laboratory,
an office, and an apartment. Typically, these trajec-
tories require the system to pass through doors and
approach to within inches of desks and tables. The
system has succeeded in tracking paths despite exter-
nal disturbances (running over electrical cords or small
boards) and widely varying loads (from no rider up to
a 190 Ib rider). Although the prototype needs further
development, its present success is largely due to the
way in which it describes the reference path.

It should be noted that space limitations prohibit
full description of alternative path-description meth-
ods in this paper. Others have tried to represent the
path geometrically, but without careful selection of the
reference point, problems similar to those described in
sections 4.1 and 4.2 would be encountered. Further-
more, by “slowing” or “speeding” time, time-based
descriptions could produce good results, but these ad-
justments would have to be made via geometric con-



siderations such as those described in this paper. Simi-
larly, point-based representations could be used if geo-
metric considerations were used to interpolate between
the points (eliminating discontinuities) and to select
the current reference point.

5 SUMMARY

A brief overview of the methods used by a work-
ing prototype of an autonomous powered wheelchair
system has been presented. The system uses a time-
independent extended Kalman filter based on odome-
try and visual observations of cues to provide precise
pose estimates in a structured environment. Using
these estimates during a “teaching” mode, a geomet-
ric representation of a reference path is created and
stored. Using this representation, along with accurate
estimates, the system is able to track reference paths
accurately and smoothly despite large disturbances or
sudden changes in the estimated position and/or ori-
entation. Furthermore, this method allows the veloc-
ity to be adjusted while the path is being tracked if
more accurate estimates are required.

Further work is needed to bring this system to the
point where it can be used practically. Proximity-
type sensors must be incorporated to sense obstacles
and avoid collisions. The computer must be down-
sized, and an interface must be implemented which
allows a large range of user-input devices to be used.
However, these problems can be solved, and doing so
may bring the system to the point where disabled
individuals can take advantage of such a device. In
much the same way that powered wheelchairs allowed
individuals, who could not navigate using standard
wheelchairs, to become independent, it is hoped that
the methods and device described in this paper would
give those who cannot steer a powered wheelchair the
ability to navigate throughout a structured environ-
ment.
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